Forex Forecasting with Random Forests – 1/N Preproccesing

Economy
# Import libraries

import numpy as np
import pandas as pd
import datetime as dt

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import optuna

from sklearn.metrics import confusion_matrix
# from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay

import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib as mpl
import matplotlib.ticker as ticker

# How to install talib https://tkstock.site/2018/08/22/post-593/
import talib as ta
# Evaluation function

def win_loss(Y_test, pred):
    # Data framing of Series type data
    test_y2 = pd.DataFrame(Y_test)
    # Store forecast results
    test_y2['pred'] = pred

    # Define each cell of the confusion matrix
    m1 = len(test_y2[(test_y2['Maguro']==1) & (test_y2['pred']==1)])
    m2 = len(test_y2[(test_y2['Maguro']==1) & (test_y2['pred']==0)])
    m3 = len(test_y2[(test_y2['Maguro']==1) & (test_y2['pred']==-1)])
    m4 = len(test_y2[(test_y2['Maguro']==0) & (test_y2['pred']==1)])
    m5 = len(test_y2[(test_y2['Maguro']==0) & (test_y2['pred']==0)])
    m6 = len(test_y2[(test_y2['Maguro']==0) & (test_y2['pred']==-1)])
    m7 = len(test_y2[(test_y2['Maguro']==-1) & (test_y2['pred']==1)])
    m8 = len(test_y2[(test_y2['Maguro']==-1) & (test_y2['pred']==0)])
    m9 = len(test_y2[(test_y2['Maguro']==-1) & (test_y2['pred']==-1)])

    # Calculation of total number of transactions, percentage of large wins, percentage of large losses, and
    try:
        mall=m1+m2+m3+m4+m5+m6+m7+m8+m9
        ma=m1+m3+m4+m6+m7+m9
        mb=(m1+m9)/ma
        mc=(m3+m7)/ma
        win_loss_ratio = mb/mc
    except ZeroDivisionError:
        win_loss_ratio = 0
        
    # Output of various model evaluation indices
    return win_loss_ratio
Xiofx
Xiofx

An experienced Machine Learning and Deep Learning professional and logistics improvement entrepreneur in Tokyo, Japan, with an interest in economies around the world. She likes travel very much.

XiofxFollow
EconomyFXPythonTechnology

Comments

Letteralpha